Eng. Laith R. Batarseh
Tuesday 09/04/2013
Student Name:
Student ID number:

Problem \#1: chose the correct answer and draw a table in the answer sheet and fill it with your choices.
(6marks)

1. How many degree of freedom the system shown in the figure has
a. 0
b. 1
c. 2
d. 3
e. infinite
2. Fill the blank: the mass in vibrating system \qquad
a. Store kinetic energy
b. Store potential energy
c. Dissipate energy

d. $a+b$
e. Has no rule at all
3. Find the equivalent stiffness for the springs configuration shown in the figure where $k=100 \mathrm{~N} / \mathrm{m}$
a. $100 \mathrm{~N} / \mathrm{m}$
b. $400 \mathrm{~N} / \mathrm{m}$
c. $300 \mathrm{~N} / \mathrm{m}$
d. $250 \mathrm{~N} / \mathrm{m}$
e. $40 \mathrm{~N} / \mathrm{m}$

4. Find the natural frequency for single DoF system if $k=1000 \mathrm{~N} / \mathrm{m}$ and $\mathrm{m}=10 \mathrm{~kg}$.
a. $10 \mathrm{rad} / \mathrm{s}$
b. 10 Hz
c. $100 \mathrm{rad} / \mathrm{s}$
d. 100 Hz
e. $40 \mathrm{~N} / \mathrm{m}$
5. Which of the following represents harmonic motion. Where a, b, c, and d are constants
a. $\quad x(t)=a x+b$
b. $x(t)=a \ln \left(x^{c}\right)+b$
c. $x(t)=a \cos (b t)+c \sin (b t)$
d. $x(t)=a \cos (b t-d)$
e. $c+d$
6. if single DoF system with $k=1000 \mathrm{~N} / \mathrm{m}$ and $m=10 \mathrm{~kg}$ has the following response: $x(t)=A \cos \left(\omega_{n} t-\phi\right)$. If the initial displacement was $\underline{\mathbf{2 m}}$ and the initial velocity equal zero. Then the values of $\underline{\boldsymbol{A}}, \underline{\Phi}$ and $\underline{\omega}_{\underline{n}}$ will be respectively:
a. $10 \mathrm{~m}, 30^{\circ}, 10 \mathrm{rad} / \mathrm{sec}$
b. $2 \mathrm{~m}, 90^{\circ}, 10 \mathrm{rad} / \mathrm{sec}$
c. $2 \mathrm{~m}, 0^{\circ}, 10 \mathrm{rad} / \mathrm{sec}$
d. $10 \mathrm{~m}, 0^{\circ}, 10 \mathrm{rad} / \mathrm{sec}$
e. None of the above is correct

\mathbf{Q}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Answer	\mathbf{B}	\mathbf{A}	\mathbf{D}	\mathbf{A}	\mathbf{E}	\mathbf{C}

Problem \#2: Draw the free-body diagram and derive the equation of motion using Newton s second law of motion for the systems shown in figure and find its natural frequency in terms of system parameters ($\mathbf{6}$ marks)

Solution:

1. Equation of motion

a. when the mass is added to the system, a static deflection occurs in spring equivalent to the initial rotation. Let us name this initial rotation $\left(\theta_{0}\right)$.
b. the motion starts from the static point and let us name it (θ)
c. the force generated in spring is related to the angular deflection as follow:

$$
F_{s}=k(r)\left(\theta+\theta_{o}\right)
$$

d. the governing equation for the mass (m):

$$
m g-T=m \ddot{x} \quad \ldots . \text { Eq. } 1
$$

e. the governing equation for the pulley $\left(\mathrm{J}_{\mathrm{o}}\right)$:

$$
J_{o} \ddot{\theta}=T(4 r)-k(r)\left(\theta+\theta_{o}\right)(r) \ldots . \mathrm{Eq} .2
$$

f. according to static equilibrium (when $\theta=0$): $m g(4 r)=k\left(r \theta_{o}\right)(r) \Rightarrow \theta_{o}=\frac{4 m g}{r k} \ldots . E q .3$
g. substitute Eq.s 1 and 3 into Eq.2:

$$
\begin{aligned}
& J_{o} \ddot{\theta}=(m g-m \ddot{x})(4 r)-k r^{2}\left(\theta+\frac{4 m g}{r k}\right) \\
& J_{o} \ddot{\theta}-m g(4 r)+m \ddot{x}(4 r)+k r^{2} \theta+(4 r) m g=0 \Rightarrow J_{o} \ddot{\theta}+m \ddot{x}(4 r)+k r^{2} \theta=0
\end{aligned}
$$

First Exam

h. x to θ relation: $x=4 r \theta \rightarrow \ddot{x}=4 r \ddot{\theta}$ then the governing equation becomes:

$$
\begin{gathered}
J_{o} \ddot{\theta}+m \ddot{\theta}\left(16 r^{2}\right)+k r^{2} \theta=0 \Rightarrow\left(J_{o}+16 m r^{2}\right) \ddot{\theta}+\left(k r^{2}\right) \theta=0 \\
\omega_{n} \sqrt{\frac{\left(k r^{2}\right)}{\left(J_{o}+16 m r^{2}\right)}}
\end{gathered}
$$

Problem \#3: if the system shown in the figure represents a rod connected to linear springs at its ends and a single torsional spring at point A .
(8 marks)
If the rod has the following parameters:

1. $\mathrm{m}=4.5 \mathrm{~kg}$.
2. $l=1 \mathrm{~m}$
3. $J_{O}=\frac{1}{9} m l^{2}$

And the springs stiffness(s) are:

1. $\mathrm{k}=150 \mathrm{~N} / \mathrm{m}$
2. $\mathrm{k}_{\mathrm{t}}=50 \mathrm{~N} . \mathrm{m} /$ dgree

Find:

1. The mathematical model that govern this system
2. Find the natural frequency of this system 3. What is the response of this system if the initial displacement equal 10° and the initial velocity equal zero.

Assume small angular deflection

Solution:

1. The coupled springs connected at the ends of the rod are connected as parallel springs. So, the equivalent stiffness for it will equal $k+k=2 k$.
2. The F.B.D for this system is shown as after giving it an initial excitation (θ)
3. Assume the positive direction is the counterclockwise which in this case, θ is positive and the other moment parts (springs and weight) are negative because they try to rotate the system clockwise.
4. Apply Newton's $2^{\text {nd }}$ law of motion to the system:

$$
\begin{aligned}
& \sum M_{A}=J_{o} \ddot{\theta} \\
& J_{o} \ddot{\theta}=-2 k x_{1}\left(\frac{l}{3}\right)-k x_{1}\left(\frac{l}{3}\right)-2 k x_{2}\left(\frac{2 l}{3}\right)-k x_{2}\left(\frac{2 l}{3}\right)-m g\left(\frac{l}{2}-\frac{l}{3}\right) \theta-k_{t} \theta
\end{aligned}
$$

5. Rearrange the terms

$$
J_{o} \ddot{\theta}+k x_{1}(l)+k x_{2}(2 l)+m g\left(\frac{l}{6}\right) \theta+k_{t} \theta=0
$$

6. Now let us relate the translational distances (x_{1} and x_{2}) to θ :

$$
\begin{aligned}
& \sin (\theta) \approx \theta=\frac{x_{1}}{l / 3} \Rightarrow x_{1}=\theta\left(\frac{l}{3}\right) \\
& \sin (\theta) \approx \theta=\frac{x_{2}}{2 l / 3} \Rightarrow x_{2}=\theta\left(\frac{2 l}{3}\right)
\end{aligned}
$$

7. So the mathematical model becomes:

$$
\begin{gathered}
J_{o} \ddot{\theta}+k\left(\theta \frac{l}{3}\right)(l)+k\left(\theta \frac{2 l}{3}\right)(2 l)+m g\left(\frac{l}{6}\right) \theta+k_{t} \theta=0 \\
J_{o} \ddot{\theta}+\theta\left(k \frac{l^{2}}{3}\right)+\theta\left(k \frac{4 l^{2}}{3}\right)+m g\left(\frac{l}{6}\right) \theta+k_{t} \theta=0 \Rightarrow J_{o} \ddot{\theta}+\left\{k \frac{l^{2}}{3}+k \frac{4 l^{2}}{3}+\frac{m g}{6}+k_{t}\right\} \theta=0
\end{gathered}
$$

8. Substitute the physical parameters of the system in the final format of the mathematical model:

$$
J_{o}=\frac{1}{9} m l^{2}=\frac{2}{9} k g \cdot m^{2} \Rightarrow \frac{1}{2} \ddot{\theta}+\left\{150 \frac{1^{2}}{3}+150 \frac{4(1)^{2}}{3}+\frac{(4.5)(9.81)}{6}+50\right\} \theta=0 \Rightarrow 0.5 \ddot{\theta}+307.4 \theta=0
$$

9. And hence, the natural frequency equal:

$$
\omega_{n}=\sqrt{307.4 / 0.5}=24.8 \mathrm{rad} / \mathrm{s}
$$

10. This system is a single DoF undamped free vibration system and the response of such system is given as:

$$
\theta(t)=\theta_{o} \cos \left(\omega_{n} t\right)+\frac{\dot{\theta}_{o}}{\omega_{n}} \sin \left(\omega_{n} t\right)=A \cos \left(\omega_{n} t-\phi\right)=A_{o} \sin \left(\omega_{n} t+\phi\right)
$$

1. $\phi=\tan ^{-1}\left(\frac{\dot{\theta}_{o}}{\theta_{o} \omega_{n}}\right)=\tan ^{-1}\left(0^{o}\right)=0^{o}, \phi_{o}=\tan ^{-1}\left(\frac{\theta_{o} \omega_{n}}{\dot{\theta}_{o}}\right)=\tan ^{-1}(\infty)=\frac{\pi}{2}$
2. $A=\sqrt{\theta_{o}^{2}+\left(\frac{\dot{\theta}_{o}}{\omega_{n}}\right)^{2}}=\theta_{o}=10^{o}=\frac{\pi}{18}$

So the solution can be:

1. $\theta(t)=\theta_{o} \cos \left(\omega_{n} t\right)+\frac{\dot{\theta}_{o}}{\omega_{n}} \sin \left(\omega_{n} t\right)=\frac{\pi}{18} \cos (24.8 t)$
2. $\quad \theta(t)=\frac{\pi}{18} \cos (24.8 t)$
3. $\theta(t)=\frac{\pi}{18} \sin \left(24.8 t+\frac{\pi}{2}\right)$
